
D03 – Partial Differential Equations

D03PPF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03PPF integrates a system of linear or nonlinear parabolic partial differential equations (PDEs) in one
space variable, with scope for coupled ordinary differential equations (ODEs), and automatic adaptive
spatial remeshing. The spatial discretisation is performed using finite differences, and the method of lines
is employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a Backward
Differentiation Formula (BDF) method or a Theta method (switching between Newton’s method and
functional iteration).

2 Specification

SUBROUTINE D03PPF(NPDE, M, TS, TOUT, PDEDEF, BNDARY, UVINIT, U,
1 NPTS, X, NCODE, ODEDEF,NXI, XI, NEQN, RTOL,
2 ATOL, ITOL, NORM, LAOPT, ALGOPT, REMESH,
3 NXFIX,XFIX, NRMESH, DXMESH, TRMESH, IPMINF,
4 XRATIO, CONST, MONITF, W, NW,IW, NIW, ITASK,
5 ITRACE, IND, IFAIL)
INTEGER NPDE, M, NPTS, NCODE, NXI, NEQN, ITOL, NXFIX,
1 NRMESH, IPMINF, NW, IW(NIW), NIW, ITASK, ITRACE,
2 IND, IFAIL
real TS, TOUT, U(NEQN), X(NPTS), XI(∗), RTOL(∗),
1 ATOL(∗), ALGOPT(30), XFIX(∗), DXMESH, TRMESH,
2 XRATIO, CONST, W(NW)
LOGICAL REMESH
CHARACTER∗1 NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, UVINIT, ODEDEF, MONITF

3 Description

D03PPF integrates the system of parabolic-elliptic equations and coupled ODEs
NPDE∑
j=1

Pi,j

∂Uj

∂t
+Qi = x

−m ∂

∂x
(xmRi), i = 1, 2, . . . ,NPDE, a ≤ x ≤ b, t ≥ t0, (1)

Fi(t, V, V̇ , ξ, U
∗, U∗

x , R
∗, U∗

t , U
∗
xt) = 0, i = 1, 2, . . . ,NCODE, (2)

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), Pi,j and Ri depend on x, t, U , Ux, and V ; Qi depends on x, t, U , Ux, V and linearly on V̇ . The
vector U is the set of PDE solution values

U(x, t) = [U1(x, t), . . . , UNPDE(x, t)]
T ,

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

V (t) = [V1(t), . . . , VNCODE(t)]
T ,

and V̇ denotes its derivative with respect to time.

In (2), ξ represents a vector of nξ spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U∗, U∗

x , R
∗, U∗

t and U∗
xt

are the functions U , Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F = G−AV̇ −B
(
U∗

t

U∗
xt

)
, (3)

[NP3390/19/pdf] D03PPF.1

D03PPF D03 – Partial Differential Equations

where F = [F1, . . . , FNCODE]
T , G is a vector of length NCODE, A is an NCODE by NCODE matrix, B

is an NCODE by (nξ× NPDE) matrix and the entries in G, A and B may depend on t, ξ, U∗, U∗
x and

V . In practice the user only needs to supply a vector of information to define the ODEs and not the
matrices A and B. (See Section 5 for the specification of the user-supplied subroutine ODEDEF).

The integration in time is from t0 to tout, over the space interval a ≤ x ≤ b, where a = x1 and
b = xNPTS are the leftmost and rightmost points of a mesh x1, x2, . . . , xNPTS defined initially by the user
and (possibly) adapted automatically during the integration according to user-specified criteria. The
co-ordinate system in space is defined by the following values of m; m = 0 for Cartesian co-ordinates,
m = 1 for cylindrical polar co-ordinates and m = 2 for spherical polar co-ordinates.

The PDE system which is defined by the functions Pi,j , Qi and Ri must be specified in the user-supplied
subroutine PDEDEF.

The initial (t = t0) values of the functions U(x, t) and V (t) must be specified in a subroutine UVINIT
supplied by the user. Note that UVINIT will be called again following any initial remeshing, and so
U(x, t0) should be specified for all values of x in the interval a ≤ x ≤ b, and not just the initial mesh
points.

The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

βi(x, t)Ri(x, t, U, Ux, V) = γi(x, t, U, Ux, V, V̇), i = 1, 2, . . . ,NPDE, (4)

where x = a or x = b.

The boundary conditions must be specified in a subroutine BNDARY provided by the user. The function
γi may depend linearly on V̇ .

The problem is subject to the following restrictions:

(i) In (1), V̇j(t), for j = 1, 2, . . . ,NCODE, may only appear linearly in the functions Qi, for
i = 1, 2, . . . ,NPDE, with a similar restriction for γ;

(ii) Pi,j and the flux Ri must not depend on any time derivatives;
(iii) t0 < tout, so that integration is in the forward direction;
(iv) The evaluation of the terms Pi,j , Qi and Ri is done approximately at the mid-points of the mesh

X(i), for i = 1, 2, . . . ,NPTS, by calling the routine PDEDEF for each mid-point in turn. Any
discontinuities in these functions must therefore be at one or more of the fixed mesh points specified
by XFIX;

(v) At least one of the functions Pi,j must be non-zero so that there is a time derivative present in the
PDE problem;

(vi) If m > 0 and x1 = 0.0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x = 0.0 or
by specifying a zero flux there, that is βi = 1.0 and γi = 0.0. See also Section 8 below.

The algebraic-differential equation system which is defined by the functions Fi must be specified in the
user-supplied subroutine ODEDEF. The user must also specify the coupling points ξ in the array XI.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh points.
For simple problems in Cartesian co-ordinates, this system is obtained by replacing the space derivatives
by the usual central, three-point finite-difference formula. However, for polar and spherical problems, or
problems with nonlinear coefficients, the space derivatives are replaced by a modified three-point formula
which maintains second order accuracy. In total there are NPDE × NPTS + NCODE ODEs in time
direction. This system is then integrated forwards in time using a Backward Differentiation Formula
(BDF) or a Theta method.

The adaptive space remeshing can be used to generate meshes that automatically follow the changing
time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using
fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with
travelling wavefronts or variable-width boundary layers for example will benefit from using a moving
adaptive mesh. The discrete time-step method used here (developed by Furzeland [4]) automatically
creates a new mesh based on the current solution profile at certain time-steps, and the solution is then
interpolated onto the new mesh and the integration continues.

D03PPF.2 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

The method requires the user to supply a subroutine MONITF which specifies in an analytical or
numerical form the particular aspect of the solution behaviour the user wishes to track. This so-called
monitor function is used by the routines to choose a mesh which equally distributes the integral of the
monitor function over the domain. A typical choice of monitor function is the second space derivative of
the solution value at each point (or some combination of the second space derivatives if there is more than
one solution component), which results in refinement in regions where the solution gradient is changing
most rapidly.

The user specifies the frequency of mesh updates together with certain other criteria such as adjacent mesh
ratios. Remeshing can be expensive and the user is encouraged to experiment with the different options
in order to achieve an efficient solution which adequately tracks the desired features of the solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial mesh
points, a new initial mesh is calculated and adopted according to the user-specified remeshing criteria.
The subroutine UVINIT will then be called again to determine the initial solution values at the new mesh
points (there is no interpolation at this stage) and the integration proceeds.

4 References

[1] Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (ed J C Mason and M G Cox) Chapman and Hall 59–72

[2] Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

[3] Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

[4] Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research
Centre, Chester

[5] Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in
one space variable SIAM J. Sci. Statist. Comput. 11 (1) 1–32

5 Parameters

1: NPDE — INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE ≥ 1.

2: M — INTEGER Input

On entry: the co-ordinate system used:

M = 0
indicates Cartesian co-ordinates,

M = 1
indicates cylindrical polar co-ordinates,

M = 2
indicates spherical polar co-ordinates.

Constraint: 0 ≤ M ≤ 2.

3: TS — real Input/Output

On entry: the initial value of the independent variable t.

Constraint: TS < TOUT.

On exit: the value of t corresponding to the solution values in U. Normally TS = TOUT.

[NP3390/19/pdf] D03PPF.3

D03PPF D03 – Partial Differential Equations

4: TOUT — real Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF — SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Pi,j , Qi and Ri which define the system of PDEs. The
functions may depend on x, t, U , Ux and V . Qi may depend linearly on V̇ . PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PPF.

Its specification is:

SUBROUTINE PDEDEF(NPDE, T, X, U, UX, NCODE, V, VDOT, P, Q, R, IRES)
INTEGER NPDE, NCODE, IRES
real T, X, U(NPDE), UX(NPDE), V(∗), VDOT(∗),
1 P(NPDE,NPDE), Q(NPDE), R(NPDE)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: X — real Input
On entry: the current value of the space variable x.

4: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t), for i = 1, 2, . . . ,NPDE.

5: UX(NPDE) — real array Input
On entry: UX(i) contains the value of the component ∂Ui(x,t)

∂x , for i = 1, 2, . . . ,NPDE.

6: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

7: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

8: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

Note. V̇i(t), for i = 1, 2, . . . ,NCODE, may only appear linearly in Qj, for j = 1, 2, . . . ,NPDE.

9: P(NPDE,NPDE) — real array Output
On exit: P(i, j) must be set to the value of Pi,j(x, t, U, Ux, V), for i, j = 1, 2, . . . ,NPDE.

10: Q(NPDE) — real array Output
On exit: Q(i) must be set to the value of Qi(x, t, U, Ux, V, V̇), for i = 1, 2, . . . ,NPDE.

11: R(NPDE) — real array Output
On exit: R(i) must be set to the value of Ri(x, t, U, Ux, V), for i = 1, 2, . . . ,NPDE.

12: IRES — INTEGER Input/Output
On entry: set to −1 or 1.
On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions, as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator (IFAIL) set to 6.

D03PPF.4 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PPF returns to the calling (sub)program with the error indicator (IFAIL) set to 4.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PPF is called.
Parameters denoted as Input must not be changed by this procedure.

6: BNDARY — SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions βi and γi which describe the boundary conditions, as given
in (4).

Its specification is:

SUBROUTINE BNDARY(NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA,
1 GAMMA, IRES)
INTEGER NPDE, NCODE, IBND, IRES
real T, U(NPDE), UX(NPDE), V(∗), VDOT(∗), BETA(NPDE),
1 GAMMA(NPDE)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t) at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

4: UX(NPDE) — real array Input
On entry: UX(i) contains the value of the component ∂Ui(x,t)

∂x at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

5: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

6: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

7: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

Note. V̇i(t), for i = 1, 2, . . . ,NCODE, may only appear linearly in γj , for j = 1, 2, . . . ,NPDE.

8: IBND — INTEGER Input
On entry: specifies which boundary conditions are to be evaluated. If IBND = 0, then
BNDARY must set up the coefficients of the left-hand boundary, x = a. If IBND �= 0, then
BNDARY must set up the coefficients of the right-hand boundary, x = b.

9: BETA(NPDE) — real array Output
On exit: BETA(i) must be set to the value of βi(x, t) at the boundary specified by IBND, for
i = 1, 2, . . . ,NPDE.

10: GAMMA(NPDE) — real array Output
On exit: GAMMA(i) must be set to the value of γi(x, t, U, Ux, V, V̇) at the boundary specified
by IBND, for i = 1, 2, . . . ,NPDE.

[NP3390/19/pdf] D03PPF.5

D03PPF D03 – Partial Differential Equations

11: IRES — INTEGER Input/Output
On entry: set to −1 or 1.
On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions, as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator (IFAIL) set to 6.

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PPF returns to the calling (sub)program with the error indicator (IFAIL) set to 4.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PPF is called.
Parameters denoted as Input must not be changed by this procedure.

7: UVINIT — SUBROUTINE, supplied by the user. External Procedure

UVINIT must supply the initial (t = t0) values of U(x, t) and V (t) for all values of x in the interval
a ≤ x ≤ b.

Its specification is:

SUBROUTINE UVINIT(NPDE, NPTS, NXI, X, XI, U, NCODE, V)
INTEGER NPDE, NPTS, NXI, NCODE
real X(NPTS), XI(∗), U(NPDE,NPTS), V(∗)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: NPTS — INTEGER Input
On entry: the number of mesh points in the interval [a, b].

3: NXI — INTEGER Input
On entry: the number of ODE/PDE coupling points.

4: X(NPTS) — real array Input
On entry: the current mesh. X(i) contains the value of xi for i = 1, 2, . . . ,NPTS.

5: XI(∗) — real array Input
On entry: XI(i) contains the value of the ODE/PDE coupling point, ξi, for i = 1, 2, . . . ,NXI.

6: U(NPDE,NPTS) — real array Output
On exit: U(i, j) must contain the value of component Ui(xj , t0) for i = 1, 2, . . . ,NPDE,
j = 1, 2, . . . ,NPTS.

7: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

8: V(∗) — real array Output
On exit: V(i) must contain the value of component Vi(t0) for i = 1, 2, . . . ,NCODE.

UVINIT must be declared as EXTERNAL in the (sub)program from which D03PPF is called.
Parameters denoted as Input must not be changed by this procedure.

D03PPF.6 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

8: U(NEQN) — real array Output

On exit: U(NPDE × (j−1)+i) contains the computed solution Ui(xj , t), for i = 1, 2, . . . ,NPDE;
j = 1, 2, . . . ,NPTS, and U(NPTS×NPDE+k) contains Vk(t), for k = 1, 2, . . . ,NCODE, evaluated at
t = TS.

9: NPTS — INTEGER Input

On entry: the number of mesh points in the interval [a, b].

Constraint: NPTS ≥ 3.

10: X(NPTS) — real array Input/Output

On entry: the initial mesh points in the space direction. X(1) must specify the left-hand boundary,
a and X(NPTS) must specify the right-hand boundary, b.

Constraint: X(1) < X(2) < . . . < X(NPTS).

On exit: the final values of the mesh points.

11: NCODE — INTEGER Input

On entry: the number of coupled ODEs in the system.

Constraint: NCODE ≥ 0.

12: ODEDEF — SUBROUTINE, supplied by the user. External Procedure

ODEDEF must evaluate the functions F , which define the system of ODEs, as given in (3). If the
user wishes to compute the solution of a system of PDEs only (i.e., NCODE = 0), ODEDEF must
be the dummy routine D03PCK. (D03PCK is included in the NAG Fortran Library; however, its
name may be implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

SUBROUTINE ODEDEF(NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
1 RCP, UCPT, UCPTX, F, IRES)
INTEGER NPDE, NCODE, NXI, IRES
real T, V(∗), VDOT(∗), XI(∗), UCP(NPDE,∗),
1 UCPX(NPDE,∗), RCP(NPDE,∗), UCPT(NPDE,∗),
2 UCPTX(NPDE,∗), F(∗)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

4: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

5: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

6: NXI — INTEGER Input
On entry: the number of ODE/PDE coupling points.

7: XI(∗) — real array Input
On entry: XI(i) contains the ODE/PDE coupling point ξi, for i = 1, 2, . . . ,NXI.

[NP3390/19/pdf] D03PPF.7

D03PPF D03 – Partial Differential Equations

8: UCP(NPDE,∗) — real array Input
On entry: UCP(i, j) contains the value of Ui(x, t) at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

9: UCPX(NPDE,∗) — real array Input
On entry: UCPX(i, j) contains the value of ∂Ui(x,t)

∂x at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

10: RCP(NPDE,∗) — real array Input
On entry: RCP(i, j) contains the value of the flux Ri at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

11: UCPT(NPDE,∗) — real array Input
On entry: UCPT(i, j) contains the value of ∂Ui

∂t at the coupling point x = ξj , for i =
1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

12: UCPTX(NPDE,∗) — real array Input
On entry: UCPTX(i, j) contains the value of ∂2Ui

∂x∂t at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

13: F(∗) — real array Output
On exit: F(i) must contain the ith component of F , for i = 1, 2, . . . ,NCODE, where F is
defined as

F = G−AV̇ −B
(
U∗

t

U∗
xt

)
(5)

or
F = −AV̇ −B

(
U∗

t

U∗
xt

)
(6)

The definition of F is determined by the input value of IRES.

14: IRES — INTEGER Input/Output
On entry: the form of F that must be returned in the array F. If IRES = 1, then equation (5)
above must be used. If IRES = −1, then equation (6) above must be used.

On exit: should usually remain unchanged. However, the user may reset IRES to force the
integration routine to take certain actions, as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator (IFAIL) set to 6.

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PPF returns to the calling (sub)program with the error indicator (IFAIL) set to 4.

ODEDEF must be declared as EXTERNAL in the (sub)program from which D03PPF is called.
Parameters denoted as Input must not be changed by this procedure.

13: NXI — INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

NXI = 0 for NCODE = 0
NXI ≥ 0 for NCODE > 0.

D03PPF.8 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

14: XI(∗) — real array Input

Note: the dimension of the array XI must be at least max(1,NXI).
On entry: XI(i), i = 1, 2, . . . ,NXI, must be set to the ODE/PDE coupling points ξi.

Constraint: X(1) ≤ XI(1) < XI(2) < . . . < XI(NXI) ≤ X(NPTS).

15: NEQN — INTEGER Input
On entry: the number of ODEs in the time direction.

Constraint: NEQN = NPDE × NPTS + NCODE.

16: RTOL(∗) — real array Input
Note: the dimension of the array RTOL must be at least 1 if ITOL = 1 or 2 and at least NEQN if
ITOL = 3 or 4.
On entry: the relative local error tolerance.

Constraint: RTOL(i) ≥ 0 for all relevant i.

17: ATOL(∗) — real array Input
Note: the dimension of the array ATOL must be at least 1 if ITOL = 1 or 3 and at least NEQN if
ITOL = 2 or 4.
On entry: the absolute local error tolerance.

Constraints:

ATOL(i) ≥ 0 for all relevant i.
Corresponding elements of ATOL and RTOL cannot both be 0.0.

18: ITOL — INTEGER Input
On entry: a value to indicate the form of the local error test. ITOL indicates to D03PPF whether
to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be satisfied is
‖ei/wi‖ < 1.0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOL(1)× |U(i)|+ATOL(1)
2 scalar vector RTOL(1)× |U(i)|+ATOL(i)
3 vector scalar RTOL(i)× |U(i)|+ATOL(1)
4 vector vector RTOL(i)× |U(i)|+ATOL(i)

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, U(i), for i = 1, 2, . . . ,NEQN.

The choice of norm used is defined by the parameter NORM, see below.

Constraint: 1 ≤ ITOL ≤ 4.

19: NORM — CHARACTER*1 Input
On entry: the type of norm to be used. Two options are available:

’M’ – maximum norm.
’A’ – averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm =

√√√√ 1
NEQN

NEQN∑
i=1

(U(i)/wi)2,

while for the maximum norm
Unorm = max

i
|U(i)/wi|.

See the description of the ITOL parameter for the formulation of the weight vector w.

Constraint: NORM = ’M’ or ’A’.

[NP3390/19/pdf] D03PPF.9

D03PPF D03 – Partial Differential Equations

20: LAOPT — CHARACTER*1 Input

On entry: the type of matrix algebra required. The possible choices are:

’F’ – full matrix routines to be used;
’B’ – banded matrix routines to be used;
’S’ – sparse matrix routines to be used.

Constraint: LAOPT = ’F’, ’B’ or ’S’.

Note. The user is recommended to use the banded option when no coupled ODEs are present (i.e.,
NCODE = 0).

21: ALGOPT(30) — real array Input

On entry: ALGOPT may be set to control various options available in the integrator. If the user
wishes to employ all the default options, then ALGOPT(1) should be set to 0.0. Default values will
also be used for any other elements of ALGOPT set to zero. The permissible values, default values,
and meanings are as follows:

ALGOPT(1) selects the ODE integration method to be used. If ALGOPT(1) = 1.0, a BDF method
is used and if ALGOPT(1) = 2.0, a Theta method is used.

The default value is ALGOPT(1) = 1.0.

If ALGOPT(1) = 2.0, then ALGOPT(i), for i = 2, 3, 4 are not used.

ALGOPT(2) specifies the maximum order of the BDF integration formula to be used. ALGOPT(2)
may be 1.0, 2.0, 3.0, 4.0 or 5.0.

The default value is ALGOPT(2) = 5.0.

ALGOPT(3) specifies what method is to be used to solve the system of nonlinear equations arising
on each step of the BDF method. If ALGOPT(3) = 1.0 a modified Newton iteration is used and if
ALGOPT(3) = 2.0 a functional iteration method is used. If functional iteration is selected and the
integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration.

The default value is ALGOPT(3) = 1.0.

ALGOPT(4) specifies whether or not the Petzold error test is to be employed. The Petzold error
test results in extra overhead but is more suitable when algebraic equations are present, such as
Pi,j = 0.0, for j = 1, 2, . . . ,NPDE for some i or when there is no V̇i(t) dependence in the coupled
ODE system. If ALGOPT(4) = 1.0, then the Petzold test is used. If ALGOPT(4) = 2.0, then the
Petzold test is not used.

The default value is ALGOPT(4) = 1.0.

If ALGOPT(1) = 1.0, then ALGOPT(i), for i = 5, 6, 7 are not used.

ALGOPT(5) specifies the value of Theta to be used in the Theta integration method.

0.51 ≤ ALGOPT(5) ≤ 0.99.

The default value is ALGOPT(5) = 0.55.

ALGOPT(6) specifies what method is to be used to solve the system of nonlinear equations arising
on each step of the Theta method. If ALGOPT(6) = 1.0, a modified Newton iteration is used and
if ALGOPT(6) = 2.0, a functional iteration method is used.

The default value is ALGOPT(6) = 1.0.

ALGOPT(7) specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If ALGOPT(7) =
1.0, then switching is allowed and if ALGOPT(7) = 2.0, then switching is not allowed.

D03PPF.10 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

The default value is ALGOPT(7) = 1.0.

ALGOPT(11) specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the parameter ITASK. If ALGOPT(1) �= 0.0, a value
of 0.0 for ALGOPT(11), say, should be specified even if ITASK subsequently specifies that tcrit will
not be used.

ALGOPT(12) specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPT(12) should be set to 0.0.

ALGOPT(13) specifies the maximum absolute step size to be allowed in the time integration. If
this option is not required, ALGOPT(13) should be set to 0.0.

ALGOPT(14) specifies the initial step size to be attempted by the integrator. If ALGOPT(14) =
0.0, then the initial step size is calculated internally.

ALGOPT(15) specifies the maximum number of steps to be attempted by the integrator in any one
call. If ALGOPT(15) = 0.0, then no limit is imposed.

ALGOPT(23) specifies what method is to be used to solve the nonlinear equations at the initial
point to initialise the values of U , Ut, V and V̇ . If ALGOPT(23) = 1.0, a modified Newton iteration
is used and if ALGOPT(23) = 2.0, functional iteration is used.

The default value is ALGOPT(23) = 1.0.

ALGOPT(29) and ALGOPT(30) are used only for the sparse matrix algebra option, i.e., LAOPT
= ’S’.

ALGOPT(29) governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0.0 < ALGOPT(29) < 1.0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If ALGOPT(29) lies outside this range
then the default value is used. If the routines regard the Jacobian matrix as numerically singular
then increasing ALGOPT(29) towards 1.0 may help, but at the cost of increased fill-in.

The default value is ALGOPT(29) = 0.1.

ALGOPT(30) is used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPT(29)) below which an internal error is invoked. ALGOPT(30) must be greater than zero,
otherwise the default value is used. If ALGOPT(30) is greater than 1.0 no check is made on the
pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular
(see ALGOPT(29)).

The default value is ALGOPT(30) = 0.0001.

22: REMESH — LOGICAL Input

On entry: indicates whether or not spatial remeshing should be performed.

REMESH = .TRUE. indicates that spatial remeshing should be performed as specified.

REMESH = .FALSE. indicates that spatial remeshing should be suppressed.

Note. REMESH should not be changed between consecutive calls to D03PPF. Remeshing can be
switched off or on at specified times by using appropriate values for the parameters NRMESH and
TRMESH at each call.

23: NXFIX — INTEGER Input

On entry: the number of fixed mesh points.

Constraint: 0 ≤ NXFIX ≤ NPTS−2.

Note. The end-points X(1) and X(NPTS) are fixed automatically and hence should not be specified
as fixed points.

[NP3390/19/pdf] D03PPF.11

D03PPF D03 – Partial Differential Equations

24: XFIX(∗) — real array Input
Note: the dimension of the array XFIX must be at least max(1,NXFIX).
On entry: XFIX(i), i = 1, 2, . . . ,NXFIX, must contain the value of the x coordinate at the ith fixed
mesh point.

Constraint: XFIX(i) < XFIX(i+1), i = 1, 2, . . . ,NXFIX−1}, and each fixed mesh point must
coincide with a user-supplied initial mesh point, that is XFIX(i) = X(j) for some j, 2 ≤ j ≤
NPTS−1.

Note. The positions of the fixed mesh points in the array X remain fixed during remeshing, and so
the number of mesh points between adjacent fixed points (or between fixed points and end-points)
does not change. The user should take this into account when choosing the initial mesh distribution.

25: NRMESH — INTEGER Input
On entry: specifies the spatial remeshing frequency and criteria for the calculation and adoption of
a new mesh.

NRMESH < 0
indicates that a new mesh is adopted according to the parameter DXMESH below. The mesh
is tested every |NRMESH| timesteps.

NRMESH = 0
indicates that remeshing should take place just once at the end of the first time step reached
when t > TRMESH (see below).

NRMESH > 0
indicates that remeshing will take place every NRMESH time steps, with no testing using
DXMESH.

Note. NRMESH may be changed between consecutive calls to D03PPF to give greater flexibility
over the times of remeshing.

26: DXMESH — real Input
On entry: determines whether a new mesh is adopted when NRMESH is set less than zero. A
possible new mesh is calculated at the end of every |NRMESH| time steps, but is adopted only if

x
(new)
i > x

(old)
i +DXMESH× (x(old)

i+1 − x(old)
i)

or
x

(new)
i < x

(old)
i −DXMESH× (x(old)

i − x(old)
i−1)

DXMESH thus imposes a lower limit on the difference between one mesh and the next.

Constraint: DXMESH ≥ 0.0.

27: TRMESH — real Input
On entry: specifies when remeshing will take place when NRMESH is set to zero. Remeshing will
occur just once at the end of the first time step reached when t is greater than TRMESH.

Note. TRMESH may be changed between consecutive calls to D03PPF to force remeshing at several
specified times.

28: IPMINF — INTEGER Input
On entry: the level of trace information regarding the adaptive remeshing. Details are directed to
the current advisory message unit (see X04ABF).

IPMINF = 0
No trace information.

IPMINF = 1
Brief summary of mesh characteristics.

IPMINF = 2
More detailed information, including old and new mesh points, mesh sizes and monitor function
values.

Constraint: 0 ≤ IPMINF ≤ 2.

D03PPF.12 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

29: XRATIO — real Input

On entry: an input bound on the adjacent mesh ratio (greater than 1.0 and typically in the range
1.5 to 3.0). The remeshing routines will attempt to ensure that

(xi − xi−1)/XRATIO < xi+1 − xi < XRATIO× (xi − xi−1)

Suggested value: XRATIO = 1.5.

Constraint: XRATIO > 1.0.

30: CONST — real Input

On entry: an input bound on the sub-integral of the monitor function Fmon(x) over each space
step. The remeshing routines will attempt to ensure that

∫ xi+1

xi

Fmon(x) dx ≤ CONST
∫ xNPTS

x1

Fmon(x) dx,

(see Furzeland [4]). CONST gives the user more control over the mesh distribution e.g., decreasing
CONST allows more clustering. A typical value is 2/(NPTS−1), but the user is encouraged to
experiment with different values. Its value is not critical and the mesh should be qualitatively
correct for all values in the range given below.

Suggested value: CONST = 2.0/(NPTS−1).

Constraint: 0.1/(NPTS−1) ≤ CONST ≤ 10.0/(NPTS−1).

31: MONITF — SUBROUTINE, supplied by the user. External Procedure

MONITF must supply and evaluate a remesh monitor function to indicate the solution behaviour
of interest.

If the user specifies REMESH = .FALSE., i.e., no remeshing, then MONITF will not be called
and the dummy routine D03PCL may be used for MONITF. (D03PCL is included in the NAG
Fortran Library; however, its name may be implementation-dependent: see the Users’ Note for your
implementation for details.)

Its specification is:

SUBROUTINE MONITF(T, NPTS, NPDE, X, U, R, FMON)
INTEGER NPTS, NPDE
real T, X(NPTS), U(NPDE,NPTS), R(NPDE,NPTS),
1 FMON(NPTS)

1: T — real Input
On entry: the current value of the independent variable t.

2: NPTS — INTEGER Input
On entry: the number of mesh points in the interval [a, b].

3: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

4: X(NPTS) — real array Input
On entry: the current mesh. X(i) contains the value of xi for i = 1, 2, . . . ,NPTS.

5: U(NPDE,NPTS) — real array Input
On entry: U(i, j) contains the value of Ui(x, t) at x = X(j) and time t, for i = 1, 2, . . . ,NPDE,
j = 1, 2, . . . ,NPTS.

6: R(NPDE,NPTS) — real array Input
On entry: R(i, j) contains the value of Ri(x, t, U, Ux, V) at x = X(j) and time t, for
i = 1, 2, . . . ,NPDE, j = 1, 2, . . . ,NPTS.

[NP3390/19/pdf] D03PPF.13

D03PPF D03 – Partial Differential Equations

7: FMON(NPTS) — real array Output
On exit: FMON(i) must contain the value of the monitor function Fmon(x) at mesh point x
= X(i).

Constraint: FMON(i) ≥ 0.

MONITF must be declared as EXTERNAL in the (sub)program from which D03PPF is called.
Parameters denoted as Input must not be changed by this procedure.

32: W(NW) — real array Workspace
33: NW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03PPF is
called. Its size depends on the type of matrix algebra selected:

LAOPT = ’F’,
NW ≥ NEQN × NEQN + NEQN + NWKRES + LENODE,

LAOPT = ’B’,
NW ≥ (3×MLU+1) × NEQN + NWKRES + LENODE,

LAOPT = ’S’,
NW ≥ 4 × NEQN + 11 × NEQN/2 + 1 + NWKRES + LENODE,

where MLU = the lower or upper half bandwidths,

MLU = 2 × NPDE−1, for PDE problems only, and,

MLU = NEQN−1, for coupled PDE/ODE problems.

NWKRES = NPDE × (3×NPDE+6×NXI+NPTS+15) + NXI + NCODE + 7 × NPTS +
NXFIX+1

when NCODE > 0, and NXI > 0.

NWKRES = NPDE × (3×NPDE+NPTS+21) + NCODE + 7 × NPTS + NXFIX+2

when NCODE > 0, and NXI = 0.

NWKRES = NPDE × (3×NPDE+NPTS+21) + 7 × NPTS + NXFIX+3

when NCODE = 0.

LENODE = (6+int(ALGOPT(2))) × NEQN+50, when the BDF method is used and,

LENODE = 9 × NEQN+50, when the Theta method is used.

Note. When using the sparse option, the value of NW may be too small when supplied to the
integrator. An estimate of the minimum size of NW is printed on the current error message unit if
ITRACE > 0 and the routine returns with IFAIL = 15.

34: IW(NIW) — INTEGER array Output

On exit: the following components of the array IW concern the efficiency of the integration.

IW(1) contains the number of steps taken in time.

IW(2) contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation
of the functions in the boundary conditions.

IW(3) contains the number of Jacobian evaluations performed by the time integrator.

D03PPF.14 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

IW(4) contains the order of the ODE method last used in the time integration.

IW(5) contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution using the
LU decomposition of the Jacobian matrix.

The rest of the array is used as workspace.

35: NIW — INTEGER Input

On entry: the dimension of the array IW. Its size depends on the type of matrix algebra selected:

LAOPT = ’F’,
NIW ≥ 25 + NXFIX,

LAOPT = ’B’,
NIW ≥ NEQN + 25 + NXFIX,

LAOPT = ’S’,
NIW ≥ 25 × NEQN + 25 + NXFIX.

Note. When using the sparse option, the value of NIW may be too small when supplied to the
integrator. An estimate of the minimum size of NIW is printed on the current error message unit if
ITRACE > 0 and the routine returns with IFAIL = 15.

36: ITASK — INTEGER Input

On entry: the task to be performed by the ODE integrator. The permitted values of ITASK and
their meanings are detailed below:

ITASK = 1
normal computation of output values U at t = TOUT (by overshooting and interpolating).

ITASK = 2
take one step in the time direction and return.

ITASK = 3
stop at first internal integration point at or beyond t = TOUT.

ITASK = 4
normal computation of output values U at t = TOUT but without overshooting t = tcrit, where
tcrit is described under the parameter ALGOPT.

ITASK = 5
take one step in the time direction and return, without passing tcrit, where tcrit is described
under the parameter ALGOPT.

Constraint: 1 ≤ ITASK ≤ 5.

37: ITRACE — INTEGER Input

On entry: the level of trace information required from D03PPF and the underlying ODE solver as
follows:

If ITRACE ≤ −1, no output is generated.

If ITRACE = 0, only warning messages from the PDE solver are printed on the current error
message unit (see X04AAF).

If ITRACE = 1, then output from the underlying ODE solver is printed on the current advisory
message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration
and the time integration during the computation of the ODE system.

If ITRACE = 2, then the output from the underlying ODE solver is similar to that produced when
ITRACE = 1, except that the advisory messages are given in greater detail.

If ITRACE ≤ 3, then the output from the underlying ODE solver is similar to that produced when
ITRACE = 2, except that the advisory messages are given in greater detail.

Users are advised to set ITRACE = 0, unless they are experienced with the subchapter D02M–N
of the NAG Fortran Library.

[NP3390/19/pdf] D03PPF.15

D03PPF D03 – Partial Differential Equations

38: IND — INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND = 0
starts or restarts the integration in time.

IND = 1
continues the integration after an earlier exit from the routine. In this case, only the parameters
TOUT and IFAIL and the remeshing parameters NRMESH, DXMESH, TRMESH, XRATIO
and CONST may be reset between calls to D03PPF.

Constraint: 0 ≤ IND ≤ 1.

On exit: IND = 1.

39: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, (TOUT−TS) is too small,
or ITASK �= 1, 2, 3, 4 or 5,

or M �= 0, 1 or 2,

or at least one of the coupling points defined in array XI is outside the interval
[X(1),X(NPTS)],

or M > 0 and X(1) < 0.0,

or NPTS < 3,

or NPDE < 1,

or NORM �= ’A’ or ’M’,

or LAOPT �= ’F’, ’B’ or ’S’,

or ITOL �= 1, 2, 3 or 4,

or IND �= 0 or 1,

or incorrectly defined user mesh, i.e., X(i) ≥ X(i+1) for some i = 1, 2, . . . ,NPTS−1,
or NW or NIW are too small,

or NCODE and NXI are incorrectly defined,

or IND = 1 on initial entry to D03PPF,

or an element of RTOL or ATOL < 0.0,

or corresponding elements of RTOL and ATOL are both 0.0,

or NEQN �= NPDE × NPTS + NCODE,

or NXFIX not in the range 0 to NPTS−2,
or fixed mesh point(s) do not coincide with any of the user-supplied mesh points,

or DXMESH < 0.0,

or IPMINF �= 0, 1 or 2,

or XRATIO ≤ 1.0,

or CONST not in the range 0.1/(NPTS−1) to 10/(NPTS−1).

D03PPF.16 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

IFAIL = 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t = TS. The components of U contain
the computed values at the current point t = TS.

IFAIL = 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t = TS. The problem
may have a singularity, or the error requirement may be inappropriate.

IFAIL = 4

In setting up the ODE system, the internal initialisation routine was unable to initialise the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to
3 in one of the user-supplied subroutines PDEDEF, BNDARY or ODEDEF, when the residual in
the underlying ODE solver was being evaluated.

IFAIL = 5

In solving the ODE system, a singular Jacobian has been encountered. The user should check their
problem formulation.

IFAIL = 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in one of the user-
supplied subroutines PDEDEF, BNDARY or ODEDEF. Integration was successful as far as t =
TS.

IFAIL = 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL = 8

In one of the user-supplied routines, PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid
value.

IFAIL = 9

A serious error has occurred in an internal call to D02NNF. Check problem specification and all
parameters and array dimensions. Setting ITRACE = 1 may provide more information. If the
problem persists, contact NAG.

IFAIL = 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK �= 2 or 5.)

IFAIL = 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit). If using the sparse matrix
algebra option, the values of ALGOPT(29) and ALGOPT(30) may be inappropriate.

IFAIL = 12

In solving the ODE system, the maximum number of steps specified in ALGOPT(15) has been
taken.

IFAIL = 13

Some error weights wi became zero during the time integration (see description of ITOL). Pure
relative error control (ATOL(i) = 0.0) was requested on a variable (the ith) which has become
zero. The integration was succesful as far as t = TS.

IFAIL = 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

[NP3390/19/pdf] D03PPF.17

D03PPF D03 – Partial Differential Equations

IFAIL = 15

When using the sparse option, the value of NIW or NW was insufficient (more detailed information
may be directed to the current error message unit).

IFAIL = 16

REMESH has been changed between calls to D03PPF, which is not permissible.

7 Accuracy

The routine controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of
varying the accuracy parameters, ATOL and RTOL.

8 Further Comments

The parameter specification allows the user to include equations with only first-order derivatives in the
space direction but there is no guarantee that the method of integration will be satisfactory for such
systems. The position and nature of the boundary conditions in particular are critical in defining a stable
problem. It may be advisable in such cases to reduce the whole system to first-order and to use the Keller
box scheme routine D03PRF.

The time taken by the routine depends on the complexity of the parabolic system, the accuracy requested,
and the frequency of the mesh updates. For a given system with fixed accuracy and mesh-update frequency
it is approximately proportional to NEQN.

9 Example

This example uses Burgers Equation, a common test problem for remeshing algorithms, given by

∂U

∂t
= −U ∂U

∂x
+ E

∂2U

∂x2
,

for x ∈ [0, 1] and t ∈ [0, 1], where E is a small constant.

The initial and boundary conditions are given by the exact solution

U(x, t) =
0.1 exp(−A) + 0.5 exp(−B) + exp(−C)

exp(−A) + exp(−B) + exp(−C) ,

where
A=

50
E
(x − 0.5 + 4.95t),

B=
250
E

(x− 0.5 + 0.75t),

C=
500
E

(x− 0.375).

D03PPF.18 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D03PPF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, NCODE, M, NXI, NXFIX, NEQN, NIW,

+ NWKRES, LENODE, NW, INTPTS, ITYPE
PARAMETER (NPDE=1,NPTS=61,NCODE=0,M=0,NXI=0,NXFIX=0,

+ NEQN=NPDE*NPTS+NCODE,NIW=25+NXFIX,
+ NWKRES=NPDE*(NPTS+3*NPDE+21)+7*NPTS+NXFIX+3,
+ LENODE=11*NEQN+50,NW=NEQN*NEQN+NEQN+NWKRES+
+ LENODE,INTPTS=5,ITYPE=1)

* .. Scalars in Common ..
real E

* .. Local Scalars ..
real CONST, DXMESH, TOUT, TRMESH, TS, XRATIO
INTEGER I, IFAIL, IND, IPMINF, IT, ITASK, ITOL, ITRACE,

+ NRMESH
LOGICAL REMESH, THETA
CHARACTER LAOPT, NORM

* .. Local Arrays ..
real ALGOPT(30), ATOL(1), RTOL(1), U(NEQN),

+ UE(INTPTS), UOUT(NPDE,INTPTS,ITYPE), W(NW),
+ X(NPTS), XFIX(1), XI(1), XOUT(INTPTS)
INTEGER IW(NIW)

* .. External Subroutines ..
EXTERNAL BNDARY, D03PCK, D03PPF, D03PZF, EXACT, MONITF,

+ PDEDEF, UVINIT
* .. Common blocks ..

COMMON /EPS/E
* .. Executable Statements ..

WRITE (NOUT,*) ’D03PPF Example Program Results’
E = 0.005e0
ITRACE = 0
ITOL = 1
ATOL(1) = 0.5e-4
RTOL(1) = ATOL(1)
WRITE (NOUT,99998) ATOL, NPTS

*
* Initialise mesh ..
*

DO 20 I = 1, NPTS
X(I) = (I-1.0e0)/(NPTS-1.0e0)

20 CONTINUE
*
* Set remesh parameters..
*

REMESH = .TRUE.
NRMESH = 3
DXMESH = 0.5e0
CONST = 2.0e0/(NPTS-1.0e0)
XRATIO = 1.5e0
IPMINF = 0

*

[NP3390/19/pdf] D03PPF.19

D03PPF D03 – Partial Differential Equations

WRITE (NOUT,99993) NRMESH
WRITE (NOUT,99992) E
WRITE (NOUT,*)

*
XI(1) = 0.0e0
NORM = ’A’
LAOPT = ’F’
IND = 0
ITASK = 1

*
* Set THETA to .TRUE. if the Theta integrator is required
*

THETA = .FALSE.
DO 40 I = 1, 30

ALGOPT(I) = 0.0e0
40 CONTINUE

IF (THETA) THEN
ALGOPT(1) = 2.0e0

ELSE
ALGOPT(1) = 0.0e0

END IF
*
* Loop over output value of t
*

TS = 0.0e0
TOUT = 0.0e0
DO 60 IT = 1, 5

TOUT = 0.2e0*IT
IFAIL = 0

*
CALL D03PPF(NPDE,M,TS,TOUT,PDEDEF,BNDARY,UVINIT,U,NPTS,X,NCODE,

+ D03PCK,NXI,XI,NEQN,RTOL,ATOL,ITOL,NORM,LAOPT,
+ ALGOPT,REMESH,NXFIX,XFIX,NRMESH,DXMESH,TRMESH,
+ IPMINF,XRATIO,CONST,MONITF,W,NW,IW,NIW,ITASK,
+ ITRACE,IND,IFAIL)

*
* Set output points ..

IF (IT.EQ.1) THEN
XOUT(1) = 0.3e0
XOUT(2) = 0.4e0
XOUT(3) = 0.5e0
XOUT(4) = 0.6e0
XOUT(5) = 0.7e0

ELSE IF (IT.EQ.2) THEN
XOUT(1) = 0.4e0
XOUT(2) = 0.5e0
XOUT(3) = 0.6e0
XOUT(4) = 0.7e0
XOUT(5) = 0.8e0

ELSE IF (IT.EQ.3) THEN
XOUT(1) = 0.6e0
XOUT(2) = 0.65e0
XOUT(3) = 0.7e0
XOUT(4) = 0.75e0
XOUT(5) = 0.8e0

ELSE IF (IT.EQ.4) THEN
XOUT(1) = 0.7e0
XOUT(2) = 0.75e0

D03PPF.20 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

XOUT(3) = 0.8e0
XOUT(4) = 0.85e0
XOUT(5) = 0.9e0

ELSE IF (IT.EQ.5) THEN
XOUT(1) = 0.8e0
XOUT(2) = 0.85e0
XOUT(3) = 0.9e0
XOUT(4) = 0.95e0
XOUT(5) = 1.0e0

END IF
*

WRITE (NOUT,99999) TS
WRITE (NOUT,99996) (XOUT(I),I=1,INTPTS)

* Interpolate at output points ..
CALL D03PZF(NPDE,M,U,NPTS,X,XOUT,INTPTS,ITYPE,UOUT,IFAIL)

*
* Check against exact solution ..

CALL EXACT(TS,XOUT,INTPTS,UE)
*

WRITE (NOUT,99995) (UOUT(1,I,1),I=1,INTPTS)
WRITE (NOUT,99994) (UE(I),I=1,INTPTS)

*
60 CONTINUE

WRITE (NOUT,99997) IW(1), IW(2), IW(3), IW(5)
STOP

*
99999 FORMAT (’ T = ’,F6.3)
99998 FORMAT (//’ Accuracy requirement =’,e10.3,’ Number of points = ’,

+ I3,/)
99997 FORMAT (’ Number of integration steps in time = ’,I6,/’ Number o’,

+ ’f function evaluations = ’,I6,/’ Number of Jacobian eval’,
+ ’uations =’,I6,/’ Number of iterations = ’,I6,/)

99996 FORMAT (1X,’X ’,5F9.4)
99995 FORMAT (1X,’Approx sol. ’,5F9.4)
99994 FORMAT (1X,’Exact sol. ’,5F9.4,/)
99993 FORMAT (2X,’Remeshing every’,I3,’ time steps’,/)
99992 FORMAT (2X,’E =’,F8.3)

END
*

SUBROUTINE UVINIT(NPDE,NPTS,NXI,X,XI,U,NCODE,V)
* .. Scalar Arguments ..

INTEGER NCODE, NPDE, NPTS, NXI
* .. Array Arguments ..

real U(NPDE,NPTS), V(*), X(NPTS), XI(*)
* .. Scalars in Common ..

real E
* .. Local Scalars ..

real A, B, C, T
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Common blocks ..
COMMON /EPS/E

* .. Executable Statements ..
T = 0.0e0
DO 20 I = 1, NPTS

A = (X(I)-0.25e0-0.75e0*T)/(4.0e0*E)
B = (0.9e0*X(I)-0.325e0-0.495e0*T)/(2.0e0*E)

[NP3390/19/pdf] D03PPF.21

D03PPF D03 – Partial Differential Equations

IF (A.GT.0.0e0 .AND. A.GT.B) THEN
A = EXP(-A)
C = (0.8e0*X(I)-0.4e0-0.24e0*T)/(4.0e0*E)
C = EXP(C)
U(1,I) = (0.5e0+0.1e0*C+A)/(1.0e0+C+A)

ELSE IF (B.GT.0.0e0 .AND. B.GE.A) THEN
B = EXP(-B)
C = (-0.8e0*X(I)+0.4e0+0.24e0*T)/(4.0e0*E)
C = EXP(C)
U(1,I) = (0.1e0+0.5e0*C+B)/(1.0e0+C+B)

ELSE
A = EXP(A)
B = EXP(B)
U(1,I) = (1.0e0+0.5e0*A+0.1e0*B)/(1.0e0+A+B)

END IF
20 CONTINUE

RETURN
END

*
SUBROUTINE PDEDEF(NPDE,T,X,U,UX,NCODE,V,VDOT,P,Q,R,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NCODE, NPDE

* .. Array Arguments ..
real P(NPDE,NPDE), Q(NPDE), R(NPDE), U(NPDE),

+ UX(NPDE), V(*), VDOT(*)
* .. Scalars in Common ..

real E
* .. Common blocks ..

COMMON /EPS/E
* .. Executable Statements ..

P(1,1) = 1.0e0
R(1) = E*UX(1)
Q(1) = U(1)*UX(1)
RETURN
END

*
SUBROUTINE BNDARY(NPDE,T,U,UX,NCODE,V,VDOT,IBND,BETA,GAMMA,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NCODE, NPDE

* .. Array Arguments ..
real BETA(NPDE), GAMMA(NPDE), U(NPDE), UX(NPDE),

+ V(*), VDOT(*)
* .. Scalars in Common ..

real E
* .. Local Scalars ..

real A, B, C, UE, X
* .. Intrinsic Functions ..

INTRINSIC EXP
* .. Common blocks ..

COMMON /EPS/E
* .. Executable Statements ..

BETA(1) = 0.0e0
IF (IBND.EQ.0) THEN

X = 0.0e0
A = (X-0.25e0-0.75e0*T)/(4.0e0*E)
B = (0.9e0*X-0.325e0-0.495e0*T)/(2.0e0*E)

D03PPF.22 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

IF (A.GT.0.0e0 .AND. A.GT.B) THEN
A = EXP(-A)
C = (0.8e0*X-0.4e0-0.24e0*T)/(4.0e0*E)
C = EXP(C)
UE = (0.5e0+0.1e0*C+A)/(1.0e0+C+A)

ELSE IF (B.GT.0.0e0 .AND. B.GE.A) THEN
B = EXP(-B)
C = (-0.8e0*X+0.4e0+0.24e0*T)/(4.0e0*E)
C = EXP(C)
UE = (0.1e0+0.5e0*C+B)/(1.0e0+C+B)

ELSE
A = EXP(A)
B = EXP(B)
UE = (1.0e0+0.5e0*A+0.1e0*B)/(1.0e0+A+B)

END IF
ELSE

X = 1.0e0
A = (X-0.25e0-0.75e0*T)/(4.0e0*E)
B = (0.9e0*X-0.325e0-0.495e0*T)/(2.0e0*E)
IF (A.GT.0.0e0 .AND. A.GT.B) THEN

A = EXP(-A)
C = (0.8e0*X-0.4e0-0.24e0*T)/(4.0e0*E)
C = EXP(C)
UE = (0.5e0+0.1e0*C+A)/(1.0e0+C+A)

ELSE IF (B.GT.0.0e0 .AND. B.GE.A) THEN
B = EXP(-B)
C = (-0.8e0*X+0.4e0+0.24e0*T)/(4.0e0*E)
C = EXP(C)
UE = (0.1e0+0.5e0*C+B)/(1.0e0+C+B)

ELSE
A = EXP(A)
B = EXP(B)
UE = (1.0e0+0.5e0*A+0.1e0*B)/(1.0e0+A+B)

END IF
END IF
GAMMA(1) = U(1) - UE
RETURN
END

*
SUBROUTINE EXACT(T,X,NPTS,U)

* Exact solution (for comparison purposes)
* .. Scalar Arguments ..

real T
INTEGER NPTS

* .. Array Arguments ..
real U(NPTS), X(NPTS)

* .. Scalars in Common ..
real E

* .. Local Scalars ..
real A, B, C
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Common blocks ..
COMMON /EPS/E

* .. Executable Statements ..
DO 20 I = 1, NPTS

A = (X(I)-0.25e0-0.75e0*T)/(4.0e0*E)

[NP3390/19/pdf] D03PPF.23

D03PPF D03 – Partial Differential Equations

B = (0.9e0*X(I)-0.325e0-0.495e0*T)/(2.0e0*E)
IF (A.GT.0.0e0 .AND. A.GT.B) THEN

A = EXP(-A)
C = (0.8e0*X(I)-0.4e0-0.24e0*T)/(4.0e0*E)
C = EXP(C)
U(I) = (0.5e0+0.1e0*C+A)/(1.0e0+C+A)

ELSE IF (B.GT.0.0e0 .AND. B.GE.A) THEN
B = EXP(-B)
C = (-0.8e0*X(I)+0.4e0+0.24e0*T)/(4.0e0*E)
C = EXP(C)
U(I) = (0.1e0+0.5e0*C+B)/(1.0e0+C+B)

ELSE
A = EXP(A)
B = EXP(B)
U(I) = (1.0e0+0.5e0*A+0.1e0*B)/(1.0e0+A+B)

END IF
20 CONTINUE

RETURN
END

*
SUBROUTINE MONITF(T,NPTS,NPDE,X,U,R,FMON)

* .. Scalar Arguments ..
real T
INTEGER NPDE, NPTS

* .. Array Arguments ..
real FMON(NPTS), R(NPDE,NPTS), U(NPDE,NPTS), X(NPTS)

* .. Local Scalars ..
real DRDX, H
INTEGER I, K, L

* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN

* .. Executable Statements ..
DO 20 I = 1, NPTS - 1

K = MAX(1,I-1)
L = MIN(NPTS,I+1)
H = (X(L)-X(K))*0.5e0

* Second derivative ..
DRDX = (R(1,I+1)-R(1,I))/H
FMON(I) = ABS(DRDX)

20 CONTINUE
FMON(NPTS) = FMON(NPTS-1)
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D03PPF Example Program Results

Accuracy requirement = 0.500E-04 Number of points = 61

Remeshing every 3 time steps

E = 0.005

D03PPF.24 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PPF

T = 0.200
X 0.3000 0.4000 0.5000 0.6000 0.7000
Approx sol. 0.9968 0.7448 0.4700 0.1667 0.1018
Exact sol. 0.9967 0.7495 0.4700 0.1672 0.1015

T = 0.400
X 0.4000 0.5000 0.6000 0.7000 0.8000
Approx sol. 1.0003 0.9601 0.4088 0.1154 0.1005
Exact sol. 0.9997 0.9615 0.4094 0.1157 0.1003

T = 0.600
X 0.6000 0.6500 0.7000 0.7500 0.8000
Approx sol. 0.9966 0.9390 0.3978 0.1264 0.1037
Exact sol. 0.9964 0.9428 0.4077 0.1270 0.1033

T = 0.800
X 0.7000 0.7500 0.8000 0.8500 0.9000
Approx sol. 1.0003 0.9872 0.5450 0.1151 0.1010
Exact sol. 0.9996 0.9878 0.5695 0.1156 0.1008

T = 1.000
X 0.8000 0.8500 0.9000 0.9500 1.0000
Approx sol. 1.0001 0.9961 0.7324 0.1245 0.1004
Exact sol. 0.9999 0.9961 0.7567 0.1273 0.1004

Number of integration steps in time = 205
Number of function evaluations = 4872
Number of Jacobian evaluations = 71
Number of iterations = 518

[NP3390/19/pdf] D03PPF.25 (last)

